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Abstract—Given a graph G and a vertex q 2 G, the community search (CS)

problem aims to efficiently find a subgraph of G whose vertices are closely related

to q. Communities are prevalent in social and biological networks, and can be used

in product advertisement and social event recommendation. In this paper, we study

profiled community search (PCS), where CS is performed on a profiled graph. This

is a graph in which each vertex has labels arranged in a hierarchical manner.

Extensive experiments show that PCS can identify communities with themes that

are common to their vertices, and is more effective than existing CS approaches.

As a naive solution for PCS is highly expensive, we have also developed a tree

index, which facilitates efficient and online solutions for PCS.

Index Terms—Community search, social networks, graph queries, profiled graph

Ç

1 INTRODUCTION

GIVEN a graph G and a query vertex q 2 G, the goal of community
search (CS) is to extract communities, or densely connected sub-
graphs of G that contain q, in an online manner. Communities,
which are often found in large graphs such as social media and bio-
logical networks, can be used in various applications, such as social
event setting, friend recommendation, and research collaboration
analysis [1], [2], [3], [4], [5].

In this paper, we investigate the CS problem for a profiled
graph. This is essentially a kind of attributed graphs, where each
graph vertex is associated with a set of labels arranged in a
hierarchical manner called a P-tree. Fig. 1a shows a profiled
graph, which is a computer science coll‘aboration network;
each vertex represents a researcher, and a link between two
vertices depicts that the two corresponding researchers have
worked together before. Each vertex is associated with a P-tree,
which describes the expertise of researchers. Fig. 1c shows the
meanings of the terms in each P-tree, following the ACM Com-
puting Classification System (CCS)1, which is partially presented
in Fig. 1b. For instance, vertex B denotes a researcher, whose
research domain is in computing methodology (CM), with spe-
cific interest in machine learning (ML) and artificial intelligence
(AI). Profiled graphs are informative and can be found in
various graph applications (e.g., knowledge bases, social and

collaboration networks). Moreover, the P-trees of profiled
graphs systematically organize labels relat‘ed to a vertex (e.g.,
hierarchical and interrelated knowledge in knowledge bases,
affiliation, expertise, and locations in social and collaboration
networks), reflecting the semantic relationship among them.
For example, in a P-tree, label “London” can be a child node of
“UK”, because London is a UK city.

To our best knowledge, previous CS algorithms are not designed
for profiled graphs. Early solutions (e.g., [1], [2], [3]) often only con-
sider graph topology (e.g., a k-core is a community such that each
vertex is connected to k or more vertexes). However, they did not
consider the use of vertex labels. As pointed out in [4], the communi-
ties returned by those solutions are often huge (e.g., a community
can easily contain over 1,000 vertices). Moreover, the vertices
included in the communities were not quite related. Recent works,
such as ACQ [4] and ATC [5], propose to use both graph structure
and vertex label information. While these works have been shown
to be more effective than CS solutions that do not utilize vertex
labels, they did not employ the hierarchical relationship among
labels (e.g., P-trees in Fig. 1a). This may lead to suboptimal results.
In Fig. 1a, suppose that a renowned expert D wants to organize an
academic seminar. Based on the ACQ solution [4], with k=2, only a
2-core is searched (Fig. 2b), whose vertices {B, C, D} have several
labels (i.e., r, CM,ML, AI) in common. However, it fails to return the
community in Fig. 2c, whose vertices are also highly similar. For
these two communities, the shared labels as well as their relation-
ships in the P-tree are very different. Therefore, both communities
can be presented to the organizer for further selection.

In this paper, we study profiled community search (PCS), which
aims to find profiled communities, or PC’s, for a profiled graph. In a
profiled graph, each vertex is associated with a P-tree. Conceptu-
ally, a PC is a group of densely connected vertices, whose P-trees
have the largest degree of overlap. This overlapping part is the
largest common subtree shared by all the vertices. Fig. 2 illustrates
two PC’s in the profiled graph of Fig. 1, namely {B, C, D} and {A,
D, E}, as well as their largest common subtrees. For example, in
Fig. 2c, vertices A, D, and E all possess the subtree with root r and
leaf nodes IS and DMS. Notice that these three vertices also form a
2-core of D, and the common subtree among them is the largest.
The common subtree reflects the “theme” of the community. In the
PC of Fig. 2b, all the researchers involved share interest in machine
learning and artificial intelligence, whereas for Fig. 2c, the research-
ers are all interested in data management system.

Contributions. As we will explain, a simple solution to solve the
PCS problem is extremely expensive. To improve the efficiency of
finding PC’s (so that they can be used in online applications), we first
introduce an anti-monotonicityproperty, which allows the candidates
for a PC to be pruned efficiently. We further develop the CP-tree
index, which systematically organizes the graph vertices and P-trees
of a profiled graph. The CP-tree enables the development of two fast
PC discovery algorithms. We experimentally evaluate our solutions
on two real large profiled graphs and one synthetic profiled graph.
Our results show that PC’s are better representations of communi-
ties, and the CP-tree based algorithms are up to 4 order-of-magni-
tude faster than basic solution.

Organization. We review the related work in Section 2. Section 3
presents the PCS problem and a basic solution. Section 4 discusses
the CP-tree and its related solutions. We report the experimental
results in Section 5, and conclude in Section 6.

2 RELATED WORK

In the literature, there are two kinds of work related to the retrieval
of communities, namely community detection (CD) and community
search (CS).
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Community Detection (CD) aims to obtain all the communities
from a given graph. Recent works [6], [7] use clustering techniques
or topic models to obtain communities from attributed graphs.
However, these studies often assume that the attribute of the vertex
is a set of keywords, and do not consider the hierarchical relation-
ship among them. In addition, CD solutions are typically time con-
suming, and they may not be suitable for online applications that
require fast retrieval of communities. It is also interesting to exam-
ine how our PCS solutions can be extended to support CD.

Community Search (CS) returns communities for a given vertex
in a fast and online manner. Most existing CS solutions [1], [2], [3],
[16], [8], [9] only consider graph topologies, but not the labels asso-
ciated with the vertices. Recent CS solutions, such as ACQ [4], [10],
[17] and ATC [5], make use of both vertex labels and graph struc-
ture to find communities. However, they are not designed for pro-
filed graphs, and do not consider the hierarchical relationship
among vertex labels. We have performed detailed experiments on
real datasets (Section 5). We show that our algorithms yield better
communities than state-of-the-art CS solutions.

3 PROBLEM DEFINITION AND BASIC SOLUTION

In this section, we first formally introduce the PCS problem, and
then give a basic solution to the PCS problem.

3.1 The PCS Problem

A profiled graph GðV;EÞ is an undirected graph with vertex set V
and edge set E. Each vertex v 2 V is associated with a profiled tree
(P-tree) to describe v’s hierarchical attributes.

Definition 1 (P-tree). The P-tree of vertex q, denoted by T ðqÞ=
ðVT ðqÞ; ET ðqÞÞ, is a rooted ordered tree, where VT ðqÞ is the set of attribute
labels and ET ðqÞ is the set of edges between labels. A P-tree satisfies fol-
lowing constraints: (1) There is only one root node r 2 VT ðqÞ; (2)
8ðx; yÞ 2 ET ðqÞ, it is directed and y is the child attribute label of x; and
(3) 8y 2 VT ðqÞ and y 6¼ r, there is one and only one x 2 VT ðqÞ, s.t.
ðx; yÞ 2 ET ðqÞ.

In practice, labels in the upper levels of the P-tree are more
semantically general than those in lower levels. All edges in ET ðqÞ
preserve the semantic relationships among labels in VT ðqÞ.

Definition 2 (Induced Rooted Subtree). Given two P-trees
S=ðVS; ESÞ and T=ðVT ;ET Þ, S is the induced rooted subtree of T ,
denoted by S � T , if VS � VT and ES � ET .

Essentially, an induced rooted subtree defines an inclusion rela-
tionship between two P-trees. Unless otherwise specified, we use
“subtree” to mean “induced rooted subtree”. We call the unified P-

tree of all vertices’ P-trees a Global P-tree (GP-tree), which usually
corresponds to a taxonomy system in practice.

Definition 3 (Maximal Common Subtree). Given a profiled graph
G, the maximal common subtree of G, denoted by M(G), holds the
properties: (1) 8v 2 G,M(G) � T ðvÞ; (2) there exists no other com-
mon subtreeM0(G) such thatM(G) �M0(G).

The common subtree depicts the common hierarchical part
among all P-trees in a subgraph. To further adequately depict the
common profile shared by all vertices, we define the maximal
structureM(G), which can sufficiently find commonalities among
diverse interests of users. As a result, we can maximize vertices’
common profiles, including the topology and semantics of users’
profiles. Next, we formally introduce the PCS problem.

Problem 1 (PCS). Given a profiled graph GðV;EÞ, a positive inte-
ger k, and a query node q 2 G, find a set G of graphs, such that
8Gq 2 G, the following properties hold:

� Connectivity. Gq � G is connected and contains q;
� Structure cohesiveness. 8v 2 Gq, degGq ðvÞ � k, where

degGq ðvÞ denotes the degree of v inGq ;
� Profile cohesiveness. There exists no other G0q � G

satisfying the above two constraints, such that
MðGqÞ � MðG0qÞ.

� Maximal structure. There exists no other G0q satisfying
the above properties, such that Gq � G0q and MðGqÞ =
MðG0qÞ;

Essentially, a profiled community (PC) is a subgraph of G, in
which vertices are closely related in both structure and semantics.
In Problem 1, the first two properties and last property ensure the
structure cohesiveness, as shown in the literature [8], [10]. The
unique property profile cohesiveness captures the maximal shared
profile among all the vertices of Gq. Moreover, since the shared
subtree MðGqÞ shows the common hierarchical attribute, it can
well explain the semantic theme of the community.

3.2 A Basic Solution

Since vertices in the PC’s share a common subtree of the query ver-
tex q, a straightforward method it that we can enumerate all the
subtrees of q’s P-tree and find the corresponding PC’s. However,
as illustrated in Lemma 1, the search space may be exponentially
large and computation overhead renders it impractical. To alleviate
this issue, we iteratively perform the following two steps. All proof
of lemmas can be found in our supplemental materials.

Lemma 1. The maximum number of subtrees of a P-tree with x nodes is
2x�1 þ 1.

Step 1: Candidate Subtree Generation. To generate the candidate
subtrees, the key problem is how to avoid redundancies of the sub-
tree enumeration. In [11], Asai et al. introduced a tree pattern enu-
meration strategy, and it is based on the following two concepts:
(1) Rightmost leaf is the last P-tree node according to the depth-first
traversal order. (2) Rightmost path is defined as a path from the root
node to the rightmost leaf. Given a tree T 0, a new subtree T can
only be generated by adding a new node t to T 0 such that the fol-
lowing hold: (1) t’s parent node is on the rightmost path of T 0; (2) t

Fig. 1. A profiled graph, a subtree of CCS, and meanings of terms.

Fig. 2. Illustrating profiled community search (PCS).
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is the rightmost leaf of T . As shown in [11], this generation strategy
guarantees that all the subtrees of the P-tree will be enumerated
without repetition. Thus, we follow this strategy to generate the
candidate subtrees.

Step 2: Community Verification. After a candidate subtree T has
been generated, we verify the existence of the corresponding com-
munity. We use Gk½T � to represent the largest connected subgraph
of G containing q where each vertex has at least k neighbors and
contains the subtree T . We say that, T is feasible, if Gk½T � exists. The
verification step is mainly based on the following lemma.

Lemma 2 (Anti-Monotonicity). Given a subtree T , if Gk½T � 6¼ ;,
then 8T 0 � T , Gk½T 0� 6¼ ;.

By Lemma 2, we can conclude that, if Gk½T � is infeasible, then
we can stop generating subtrees from T . The basicmethod begins
with generating a subtree from the root node. Then, it iteratively
performs the two steps above to retrieve all the feasible Gk½T �s,
until no larger subtrees can be generated. Pseudocodes of basic
can be found in the supplemental materials.

Complexity Analysis. Letm be the number of edges inG. In worst
case all edges are traversed to compute the Gk½T � and all the sub-
trees are verified. As a result, basic completes in O(2jT ðqÞj �m)
time where jT ðqÞj denotes the number of nodes of T ðqÞ. In practice,
the value of 2jT ðqÞj could be exponentially large and this makes
basic impractical. To alleviate this issue, we propose more effi-
cient index-based solutions in next section.

4 INDEX-BASED SOLUTIONS

We first introduce some preliminaries and the proposed
CP-tree index, and then discuss the index-based query algorithms.

4.1 k-core and CL-Tree

kk-core. In line with existing CS [4], [8], we use k-core to satisfy the
constraints of minimum degree and maximal structure of a PC.
Given an integer k (k � 0), the k-core of G, denoted by Gk, is the
largest subgraph of G, such that 8v 2 Gk, degGk

ðvÞ � k. Since Gk

may be disconnected, we use k-dcores to denote one of its connected
components. An important property of k-core is the “nested” prop-
erty: given two integer i and j, j-dcore � i-dcore if i < j. In Fig. 3a,
the 0-core represents the whole graph, and 3-core is nested in 2-
core. Computing all the k-cores of a graph G, known as core
decomposition, can be completed by anO(m) algorithm [12], where
m is the number of edges in G.

CL-Tree. Since k-cores are nested, all the k-cores of a graph can
be organized into a tree structure, called CL-tree [4]. In this paper,
we adopt it, but skip the labels on the tree. The CL-tree of the graph
in Fig. 3a is shown in Fig. 3b. Clearly, vertices in each CL-tree node
and other vertices in all its descendant nodes represent a k-dcore.
For example, vertex C and other vertices fA;B;D;Eg in its child
node compose a 2-dcore. Since each vertex appears only once, the
space cost of CL-tree is OðnÞ where n is the number of vertices in
G. In addition, we maintain a map vertexNodeMap, where the key is
the vertex and the value is the node of the corresponding CL-tree
node, and it allows us to locate the k-dcore containing any query ver-
tex efficiently.

4.2 CP-tree Index

Index Overview. We build the Core Profiled tree (CP-tree) index by
considering both the P-tree structure and k-cores.Wedepict an exam-
ple CP-tree in Fig. 3c using the profiled graph in Fig. 1a. Each CP-tree
node corresponds to a label and stores the k-cores sharing this label.
To summarize, each node p consists of following four elements: (1)
label: the attribute label; (2) parentNode: the parent node of p; (3) child-
List: a list of child CP-tree nodes of p; and (4) vertexNodeMap: a map
that stores the CL-tree. In addition, we maintain a map headMap,
where the key is a vertex v, and the value is a list of CP-tree nodes,
each of which corresponds to a leaf node of v’s P-tree. Main advan-
tages of CP-tree are listed below.

� Restore P-trees. By utilizing the headMap, each vertex’s P-
tree can be restored by traversing the leaf nodes up to the
root node.

� Locating kk-dcorecore. Given an integer k, a query vertex q and a
CP-tree node t, using vertexNodeMap, we design a function
getðk; q; tÞ to get the k-dcore containing q where each vertex
contains the label t:label in constant time cost.

� Query efficiency. As discussed above, the label information
of each vertex’s P-tree can be efficiently accessed using the
headMap.

Index Construction. We incrementally create CP-tree nodes and then
link them up to build the CP-tree index. For each vertex v, we read
T ðvÞ and create new CP-tree nodes (lines 2-5). For each CP-tree node
t, we add v in t for later CL-tree construction (lines 6, 9). If P-tree node
x is a leaf node, we update headMap (line 7). Then we link up all CP-
tree nodes following the GP-tree structure. If GP-tree is unknown, we
can simultaneously unify it while reading P-trees(line 10). Finally, I
is returned (line 11).

Algorithm 1. CP-Tree Index Construction

1: function BUILDINDEX(GðV;EÞ)
2: for each v 2 V do
3: for each x 2 T ðvÞ do
4: t a CP-tree node in I such that t:label = x:label;
5: if t = null then create a CP-tree node t and add it in I ;
6: add v in t;
7: if x is the leaf node of T ðvÞ then headMap:putðv; tÞ;
8: for each t 2 I do
9: Build CL-tree for the subgraph of t;
10: link to its parent and child nodes;
11: return I ;

Complexity Analysis. Obviously, lines 2-7 take the linear time.
The time complexity of building a CL-tree is O(m � aðnÞ) [4], [10]
where m is the number of edges in G and aðnÞ, the inverse Acker-
mann function, is less than 5 for large value of n. Thus the time
complexity of building CP-tree is O(jP j �m � aðnÞ), and it is linear
to the size of G. The space cost of CP-tree is O(jP j � n) where jP j
denotes the number of labels in G. The space cost of the headMap is
O(l̂ � n) where l̂ denotes the average number of leaf nodes in each
vertex’s P-tree and l̂ < jP j. Therefore, the total space complexity is
O(jP j � n) which is linear to the size of G.

4.3 Index-Based Query Algorithms

Now we present our index-based query solutions. The first one fol-
lows the framework of basic, and it incrementally generates and
verifies the subtrees of P-tree (from smaller subtrees to larger ones).
Thus we call it incre. The advanced methods borrows some ideas
from MARGIN [13], the algorithm of mining maximal frequent sub-
graphs. As we will explain later, advanced methods can find all PC’s
by examining a small fraction of subtrees, resulting in high effi-
ciency. In addition, their time complexities areO(2jT ðqÞj �m), because
in the worst case all the subtrees are verified. However, as we will

Fig. 3. k-cores, CL-tree, and CP-tree index.
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show in Section 5.3, in practice they are much more efficient than
suchworse-case time complexities.

4.3.1 The Method incre

We begin with an interesting lemma, which greatly accelerates the
verification step.

Lemma 3. Given a CP-tree index I , a subtree T 0 and a new subtree T
which is generated from T 0 by adding a new P-tree node. We have
Gk½T � � Gk½T 0� \ I :getðk; q; TnT 0Þ, where TnT 0 denotes the new
added node.

As incre searches the communities in the subgraph which are
found in former iteration, the query efficiency is improved. We
present incre in Algorithm 2.

Algorithm 2. incre Query Algorithm

1: function QUERY(I ; q; k)
2: restore T ðqÞ using I :headMap;
3: G  ;;C GENERATESUBTREE(;; T ðqÞ);
4: whileC 6¼ ; do
5: T 0  C:popðÞ; flag true;
6: F GENERATESUBTREE(T 0; T ðqÞ);
7: for each T 2 F do
8: compute Gk½T � from Gk½T 0� \ I :getðk; q; TnT 0Þ;
9: if Gk½T � 6¼ ; then
10: flag false;C:pushðT Þ;
11: if flag = true and T 0 is maximal then G ¼ G [Gk½T 0�;
12: return G;

We first use headMap to locate the leaf nodes of T ðqÞ and then
restore T ðqÞ (line 2). We initialize C by using T ðqÞ
(line 3). In the iteration, for current subtree T 0, we generate new
subtrees. For each new subtree T , we verify the existence of Gk½T �
using the index (lines 4-8). If Gk½T � exists, we add T in F (lines 9-
10); otherwise if no subtree can be generated from T 0 or all subtrees
generated from T 0 are infeasible, we add Gk½T 0� in G if T 0 is maxi-
mal (line 11). Finally, all PC’s are returned (line 12).

4.3.2 The advancedMethods

The method incre follows the Apriori-based method, which
explores all possible subtrees by traversing the search space
from smaller subtrees to larger ones; while, as demonstrated in
the supplemental materials, the maximal feasible subtrees often
lie in the middle of the search space, which implies that most
of the exploration may be avoided. Based on this observation,
we adapt MARGIN [13] to tackle PCS.

MARGIN. It does not perform a bottom-up (or top-down) tra-
versal of the search space; instead, it narrows the search space by
examining only subgraphs that lie on the border of frequent and
infrequent subgraphs. It firstly finds an initial pair of graphs (CR,
R) where R is frequent and CR is not. CR is the subgraph of R and
they differ by exactly one edge. (CR, R) is called a cut and from
this cut, MARGIN expands to new adjacent subgraphs by adding
or deleting an edge and finds all other cuts. MARGIN defines
this function as expandCut and proves that expandCut is
able to find all maximal frequent subgraphs. Inspired by
MARGIN, we design the following functions.

1. Function expandPtree. This function is adapted from
expandCut [13] and the main modifications are as follows. Pseu-
docodes can be found in the supplementalmaterials.

� We dynamically obtain child subgraphs and parent
sugraphs, which are called child subtrees and parent subtrees
in our case, using the parentNodes and childLists of CP-tree

nodes, instead of pre-computing all subtrees in the search
space as MARGIN does.

� We define a pair of P-trees (IF; F ) as a cut, where IF is the
child subtree of F andF is feasible while IF is not;

� We dynamically verify whether a feasible subtree is
maximal.

� We develop a function verifyPTree to verify the
feasibility.

Lemma 4. Given a P-tree pair (IF; F ), expandPtree can find all fea-
sible subtrees for a PCS query.

2. Function verifyPtree . Given a subtree T , Tchild and Tparent

denote a child and the parent subtree of T . Let l denote the number
of Tparent’s leaf nodes and tni represent the ith leaf node of Tparent.
Derived from Lemma 3, we have

� Gk½Tchild� � Gk½T � \ I :getðk; q; Tchild n T Þ.

� Gk½Tparent� �
Tl

i¼1 I :getðk; q; tni Þ.
Since all P-trees are subtrees of the GP-tree, if a P-tree has the

attribute t, then t’s parent attribute t0 is also included. Thus,
I :getðk; q; tÞ � I :getðk; q; t0Þ. For a special subtree Ti (a path from
leaf node tni to root node r), we can finally get
Gk½Ti� ¼ I :getðk; q; tni Þ. Note that Tparent can be seen as several
paths and thus we get Gk½Tparent� �

Tl
i¼1 I :getðk; q; tni Þ.

Based on CP-tree, verifyPtree can efficiently verify subtrees.
Nextwe discuss threemethods to find the initial cut.

3. Function find-I. We can adapt incre to find the initial cut.
Once we find a subtree which is feasible while its child subtree is
not, thenwe can regard them as an initial cut.

4. Function find-D. We can decrementally generate subtrees
from larger subtrees to smaller ones. In each step, for an infeasible
subtree T , we remove one of T ’s leaf nodes and verify the feasibil-
ity of the new subtrees. Once there is a new feasible subtree, we
treat T and this new subtree as the initial cut.

5. Function find-P. We can find the initial cut by directly verify-
ing subtrees instead of the node one by one. Intuitively, P-tree can be
divided into several paths (from leaf nodes to the root). According to
Lemma 2, these paths can be further verified by checking the corre-
sponding leaf nodes. We call it find initial cut by path (find-P). Due
to the page limit, we present the pseudocodes of find-P in
Algorithm 3.

Algorithm 3. Find the Initial Cut: Find-P

1: function FIND-P(I ; S; q; k)
2: IF  ;; F  find a leaf node t 2 S s.t. I :getðk; q; tÞ 6¼ ;;
3: if F 6¼ ; then
4: for each t 2 S do
5: computing Gk½F [ t� from Gk½F � \ I :getðk; q; tÞ;
6: if Gk½F [ t� 6¼ ; then F ¼ F [ t;
7: else
8: path trace a path from t to r in I ;
9: find t0; t0parent on path s.t.Gk½t0�=;,Gk½t0parent� 6¼ ;;
10: IF ¼ F [ t0parent; F ¼ F [ t0;
11: Break;
12: else
13: for each t 2 S do S:replaceðt; t:parent);
14: FIND-P(I ; S; q; k);
15: complete subtrees IF; F ;
16: return ðIF; F Þ;

S denotes a P-tree node set. Initially, it consists of all leaf nodes
of T ðqÞ. If there does not exist a feasible node in S, we trace up to
verify their parent nodes (lines 13-14). Next, we iteratively check
the nodes in S. If we find a node t and Gk½F [ t� exists, we update
F (lines 5-6). Let t0parent denote the parent node of t0. If we find a

node t that Gk½F [ t� does not exist, we trace up to find the
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“boundary” where Gk½t0parent� exists while Gk½t0� does not and thus
we find an initial pair (lines 8-11). Note that at now stage, IF , F
may not be complete subtrees. Thus for the nodes in IF and F , we
need to include all their ancestor nodes and then return ðIF; F Þ as a
cut (lines 15-16).

Algorithm 4. Advanced Method

1: function QUERY(I ; q; k)
2: G  ;;
3: ðIF; F Þ  FIND(I ; S; q; k);
4: EXPANDPTREE(IF; F;G);
5: return G;

Algorithm 4 gives the overall advanced methods. Notice
that, there are three functions, i.e., find-I, find-D, and
find-P, of finding the initial cut, so we have three variants
of advanced, denoted by adv-I, adv-D and adv-P respectively.

5 EXPERIMENTS

5.1 Setup

We consider two real datasets (ACMDL and PubMed) and one
synthetic dataset (Flickr). ACMDL2 and PubMed3 are the co-author-
ship networks of researchers in computer science and biomedical
areas respectively. Each vertex of them represents an author, and
an edge is a co-authorship between two authors. For each author,
her papers have been categorized by a hierarchical subject classifi-
cation system (ACM CCS or Medical Subject Headings (MeSH)4), so
we build the P-tree by unifying the categorization information of
all her papers. For Flickr5 [14], each vertex represents a user and
each edge denotes a “follow” relationship between two users. For
each user, we use a hash function and map the associated textual
content to subjects of CCS to synthesize a P-tree. By doing this, the
same textual contents could be mapped for constructing the same
nodes in P-trees. Table 1 shows the statistics of the datasets, includ-
ing the numbers of vertices and edges, vertices’ average degree bd,
the average number of labels in P-trees bP , and the average number
of labels in the GP-tree.

To evaluate PCS queries, in line with [4], we set the default
value of k to 6. For each dataset, we randomly select 100 query ver-
tices from the 6-core. We implement all the algorithms in Java, and
run experiments on a machine having an eight-core Intel 3.40 GHz
processor, and 16GB of memory, with Ubuntu installed.

5.2 PCS Effectiveness

As mentioned before, the existing CS methods mainly focus on non-
attributed graphs. A recent work ACQ [4], [10] investigates CS on
attributed graphs. In ACQ, each vertex in the attributed graph is
associated with a set of keywords. Communities retrieved by ACQ
should satisfy the structure cohesiveness (k-core constraint) and
“keyword cohesiveness” [4], [10], i.e., the number of common key-
words shared by all vertices in communities should be maximum.

We compare PCS with ACQ. To run ACQ queries, we set each
vertex’s attribute as a set of keywords, which are the keywords in its
P-tree. In the following, we first present a case study, and then show
the quality and diversity of communities.

� A Case Study: We perform a case study on the ACMDL data-
set and consider a renowned researcher: Jim Gray. We set k
= 4 here. We present Jim’s two PC’s, i.e., PC1 and PC2, with
different research areas in Fig. 4. Notice that ACQ only finds
one community PC1 shown in Fig. 4a. This is because, ACQ
maximizes the number of shared keywords, so PC2 shown
in Fig. 4b, which has five shared keywords, cannot be
returned. In addition, all shared keywords of PC1 are orga-
nized in a tree with few branches, which implies that the
semantics of keywords are highly overlapped with each
other. In contrast, the shared subtree of PC2 has multiple
branches, so the semantics of keywords are very different
and diversified. Hence, PCS aremore effective thanACQ for
extracting communities from profiled graphs.

� Community Pairwise Similarity (CPS): We compare PCS with
three classic CS methods using “minimum degree” defini-
tion: ACQ [4], Global [1] and Local [9]. We use Tree Edit
Distance (TED) to compute the similarity between the P-trees
of any pair of vertices in communityGl. Let Ti be the P-tree of
the i-th vertex in Gl. The CPS is then the average similarity
over all pairs ofGl’s vertices, and all communities of G:

CPSðGÞ ¼ 1�
XjGj
l¼1

"
1

jGlj2
XjGl j

j¼1

XjGl j

i¼1

TEDðTi; TjÞ
jTi [ Tjj

#
; (1)

The CPS(G) value has a range of 0 and 1. The higher the
value is, the more cohesive the community is. As shown in
Fig 5a, PCs	 denotes the communities that only PCS can
search. P-ACs represents those returned by both of PCS
and ACQ. P-ACs have the most P-tree nodes (i.e., key-
words in ACQ definition) in common, and the fewest verti-
ces. Thus they have the highest CPS values. Note that PCs	

have a close CPS value with P-ACs which implies that
these unique PC’s are also of highly quaility.

TABLE 1
Datasets Used in Our Experiments

Dataset Vertices Edges bd bP j GP-tree j
ACMDL 107,656 717,958 13.34 11.54 1,908
Flickr 581,099 4,972,274 17.11 26.63 1,908
PubMed 716,459 4,742,606 13.22 27.10 10,132

Fig. 4. Two PC’s of Jim Gray.

Fig. 5. Comparing PCS with CS methods.

2. https://dl.acm.org/
3. https://www.nlm.nih.gov
4. https://meshb.nlm.nih.gov/
5. https://www.flickr.com/
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� Level-diversity ratio (LDR): To further measure the quality of
PC’s, we define a metric, called level-diversity ratio (LDR), to
measure the diversity of attributes level by level in the
shared subtrees. F denotes the method that we use here to
compare with PCS. Given a query vertex q, we use
T ðF; q; jÞ to represent the maximal common P-trees of j-th
community returned by the method F . L is the number of
levels in P-tree T ðqÞ. LiðT Þ is the number of unique labels
in the i-th level of P-tree T .H and J denote the numbers of
communities returned by the method F and PCS respec-
tively. A lower LDR value implies that the method F is less
diverse than PCS.

LDRðq; F Þ ¼ 1

L
XL
i¼1

PH
h¼1 Li

h
T ðF; q; hÞ

i
PJ

j¼1 Li

h
T ðPCS; q; jÞ

i : (2)

Intuitively, LDR reflects the proportion of unique labels in each
level. The experimental results are depicted in Fig. 5b, which
shows that communities returned by ACQ can only cover 40 to 60
percent labels of PC’s in each level. This implies that PC’s found by
PCS have higher diversity than those of ACQ, because PCS focuses
on maximizing the common structure of P-trees, rather than the
number of common keywords. As a result, all communities with
the semantically maximal properties can be found, and the com-
munities are of high diversity.

We evaluate the accuracy by using the ground-truth communi-
ties. The F1-scores demonstrate that, compared with other meth-
ods, PCS can stably extract communities with high accuracy over
three real networks. For details, please refer to the supplemental
materials.

5.3 Results of Efficiency Evaluation

In this section, we show the efficiency results of index construction
and PCS queries. More results are in the supplemental materials.

1. Index Construction. For each dataset, we randomly select 20,
40, 60 and 80 percent of its vertices (or vertices’ P-trees, or GP-
tree) to obtain four sub-datasets respectively. Figs. 6a and 6b
show the scalability of the CP-tree index construction method.
Fig. 6c examines the scalability over different fractions of the GP-
tree. We observe that, the time cost of the index construction is
linear to the size of profiled graphs, which confirms our analysis
before.

2. Query efficiency. We vary the value of k and show the
query efficiency of different algorithms in Figs. 6d and 6f. The
method incre is 100 times faster than the basic method, but
slower than the method adv-I. Further, adv-D and adv-P are
10 times faster than incre. The reason is that, compared with
incre, the advanced methods narrow the search space by veri-
fying a smaller fraction of subtrees. Also, the efficiency gap in

finding an initial cut results in the sightly different perfor-
mance of the advanced methods. Thus, the index-based meth-
ods run fast and adv-P stably scales the best. Note that three
advanced methods perform similarly on Flickr. This is because
the initial cut results are in the middle of the search space.
Thus they have similar performance even though they search
from different directions.

6 CONCLUSIONS AND FUTURE DIRECTIONS

In this paper, we study the PCS problem, which aims to find com-
munities from profiled graphs in an online manner. We develop an
index and some query algorithms. Our experimental results dem-
onstrate the effectiveness of PCS and the efficiency of our solutions.
In the future, we will study other structure (e.g., k-truss) and pro-
file cohesiveness measures in the PCS definition.
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